On the Ulam-Hyers-Rassias stability of two structures of discrete fractional three-point boundary value problems: Existence theory
نویسندگان
چکیده
<abstract><p>We prove existence and uniqueness of solutions to discrete fractional equations that involve Riemann-Liouville Caputo derivatives with three-point boundary conditions. The results are obtained by conducting an analysis via the Banach principle Brouwer fixed point criterion. Moreover, we stability, including Hyers-Ulam Hyers-Ulam-Rassias type results. Finally, some numerical models provided illustrate validate theoretical results.</p></abstract>
منابع مشابه
Ulam-Hyers-Rassias stability for fuzzy fractional integral equations
In this paper, we study the fuzzy Ulam-Hyers-Rassias stability for two kinds of fuzzy fractional integral equations by employing the fixed point technique.
متن کاملHyers-Ulam-Rassias stability of generalized derivations
One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...
متن کاملHyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay
In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.
متن کاملHyers-ulam-rassias Stability of Jordan Homomorphisms on Banach Algebras
We prove that a Jordan homomorphism from a Banach algebra into a semisimple commutative Banach algebra is a ring homomorphism. Using a signum effectively, we can give a simple proof of the Hyers-Ulam-Rassias stability of a Jordan homomorphism between Banach algebras. As a direct corollary, we show that to each approximate Jordan homomorphism f from a Banach algebra into a semisimple commutative...
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIMS mathematics
سال: 2022
ISSN: ['2473-6988']
DOI: https://doi.org/10.3934/math.2023073